Certificate-carrying modular compilation

Guillaume Davy, Pierre-Loic Garoche, Temesghen Kahsai, Xavier Thirioux
IRIT-CNRS, ONERA, CMU

September 2015 — GDR GPL 10emes Journées compilation

CONTENTS

e Context

e Synchronous observers

e Stateful observers

e Verification

DEVELOPMENT OF CRITICAL EMBEDDED SYSTEMS

s Large part of these critical systems are controllers

* aircraft controller, engine control, medical devices, etc
s Typically designed using data-flows models

* eg. Matlab Simulink, Scade
» Costly V&V to ensure software quality.

 Certification regulations: DO178-C (aircraft), [ISO26262 (cars),
EN-50128 (railway in EU), etc

* Process-based quality: specification of HLR
(High-Level-Requirements) and (Low-Level-Requirements),
traceability, conformance with standards, compliance with
HLR/LLR.

* Mainly based on test

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Control theorists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control theorists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Control theorists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control theorists Discrete version

Computer scientists l
Safety architecture

redundancy, validators,
COM/MON...

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control theorists Discrete version

Computer scientists l
Safety architecture Test
AAANAAS . .
redundancy, validators, Simulation
COM/MON...

elevation
pitch controler fanl
travel fan2

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control theorists Discrete version

Computer scientists l
Safety architecture Test
. AAANANS . .
redundancy, validators, Simulation
COM/MON...
elevationl -
elevation2 _:I
elevation3 — Original -
riginal T an
Pltchz =] C gt I
Itc — ontrolier
EitchB =
— fan2
taveld = 1]
travel3 —=

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control theorists Discrete version

Computer scientists l
Safety architecture Test
redundancy, validators, Simulation
COM/MON...
]
i | onana -
ﬁh |
o Eﬁ
7’:::, : oonat | V] fant
= : —| — O E -
=T
SRANAR j?D orgnat T JH—!
CEE =2 controter
L V]

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control theorists Discrete version

Computer scientists l
Safety architecture Test

AAANANS . .
redundancy, validators, Simulation
COM/MON...

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control theorists Discrete version

Computer scientists \ l Validation Test
Safety architecture Test
ANAAANS . .
redundancy, validators, Simulation
COM/MON...

Integration Test
Generated Code

Unit Test

Binary

DATAFLOW MODELS: LUSTRE NODES

» Map a set of (typed) input flows to output flows.
s Not purely functional: static memory through nested pre

node counter(reset: bool) returns (active: bool);
var a, b: bool;
let
a false — (not reset and not (pre b));
b false —> (not reset and pre a);
active = a and b;
tel

» Node state characterized by its memories: pre aand pre b
e Similar construct in Matlab Simulink: Unit delay

1
z
uon

MODULAR COMPILATION OF MODELS

Modular compilation of synchronous languages!
» Node state (memories) defined by a struct

struct counter_mem {

struct counter_reg { _Bool __counter_1; //
_Bool __counter_2; //
} _reg;

}s

s One step execution by a step function

void counter_step (_Bool reset, //
_Bool (xactive), //
struct counter_mem =«self); //

s Reset function to initialize the struct

void counter_reset (struct counter_mem =+self);

pre a
pre b

input
output
memory (side effect!)

Open-source implementation for Lustre: LUSTRE-C

'D. Biernacki et al. “Clock-directed modular code generation for synchronous

data-flow languages”. In: LCTES. 2008, pp. 121-130.

CONTENTS

e Context

e Synchronous observers

e Stateful observers

e Verification

EXPRESSING THE SPECIFICATION AT MODEL LEVEL:
SYNCHRONOUS OBSERVERS

Requirements of our counter node:
1. output active is false when input reset holds

2. every four steps, act ive holds, starting from the 3rd one.

Synchronous observer: rely on model constructs to express the
specification. Boolean output should always hold.

node counter_spec(reset, active: bool)
returns (safe: bool);

var cpt: int;

let

cpt = 0 — if (pre cpt = 3) or reset then 0

else pre cpt + 1;
safe = active = (cpt = 2);
tel

Annotate the node with observers:

—@ ensures reset => not active;
—@ ensures counter_spec(reset, active);
node counter(reset: bool) returns (active: bool);

SPECIFICATION AT CODE LEVEL: HOARE TRIPLES

Early idea from Hoare?:

s express imperative program intented semantics through axiomatic
semantics

» use logic to formalize pre and post-conditions
e { Pre } Code { Post }

Eg. in Frama-C?, use ANSI/ISO C Specification Language (ACSL)*

//@ requires precondition formula;

//@ ensures postcondition formula with \result;
int f (int x; int »y) {

}

2C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In:
Commun. ACM 12.10 (1969), pp. 576-580.

*P. Cuoq et al. “Frama-C: a software analysis perspective”. In: SEFM'12.
Springer, 2012, pp. 233-247.

*P. Baudin et al. ACSL: ANSI/ISO C Specification Language.

SYNCHRONOUS OBSERVERS AS HOARE TRIPLES

Simple observers (no memory) directly expressed as ensures
statements

//@ ensures reset => not =active;

void counter_step (_Bool reset,
_Bool =xactive,
counter_mem =self) {

More complex observers may have their own memories: Stateful
observers.

CONTENTS

e Context

e Synchronous observers

e Stateful observers

e Verification

STATEFUL OBSERVERS

Stateful observers are expressed as code level through:
1. observer memory, attached to the node memory definition

2. computation of the observer output using node signals and
observer memory

3. side-effect update of the observer memory, performed at each
node step execution

STATEFUL OBERVERS: EXPRESSING MEMORY
For the following contracts,

—@ ensures counter_spec(reset, active);
—@ ensures reset or pre(reset) => not active
node counter(reset: bool) returns (active: bool);

need of additional memories:
e pre cpt for counter_spec and

e pre reset for reset or pre (reset) => not active

We enrich the node struct with additional ghost fields:

struct counter_mem {
struct counter_reg {
_Bool __counter_1;
~Bool _ _counter_2;
/+@ ghost int cpt; int cpt_s; // pre cpt
_Bool init1; _Bool init1i_s; // initial state of cpt
_Bool reset; _Bool reset_s; // pre reset
_Bool init2; _Bool init2_s; // initial state of reset
«/
} _reg;
1

STATEFUL OBERVERS: COMPUTATION OF THE OBSERVER
PROPERTY

Observer value computed on this extended memory.

ACSL expression of the Lustre node counter_spec semantics.

/«@ predicate counter_spec
(int reset, int active, struct counter_mem =self)=
\let cond = ((self—>_reg.cpt_s == 3) || reset);
llet cpt = (self—>_reg.init1_s?(0):
((cond?(0):((self—>_reg.cpt_ s + 1)))));
(active == (cpt == 2));
*/

ACSL expression of the second ensures.

/+@ predicate prop

(int reset, int active,
(self—>_reg.init2_s ?(1):
(((reset || self—>_reg.reset_s) ==> (lactive))));

struct counter_mem =+self)=

*

Only reads memory. No update yet.

STATEFUL OBERVERS: UPDATE OF GHOST FIELDS

End of the node step function extended to update the ghost fields:

void counter_step (_Bool reset, _Bool (xactive),
struct counter_mem =«self) {

counter_reg _pre = self—_reg;

_Bool a = _pre.__counter_2;

_Bool b = | _pre.__counter_1;

~active = (a && b);

self —>_reg.__counter_2 a;

self—_reg.__counter_1 = b;

/+«@ ghost _Bool cond; int cpt;

cond = ((self—>_reg.cpt == 3) || reset);

if (self—>_reg.init1 || cond) { cpt = 0; } else {
cpt = (self—>_reg.cpt + 1);

self—>_reg.init1_s = self—>_reg.initl ;
self—>_reg.init1 = 0;

self—>_reg.reset

self—>_reg.reset
*/

return;

(%)

= self—>_reg.reset;
reset;

STATEFUL OBERVERS: SUMMARY

» New memory fields:

struct node_mem { struct node_reg ({
existing fields
/@ ghost ghost_fields =/
} _reg;
b

» Predicates to denote specification

/+@ predicate node_spec(input, output, extended_memory) =

» Function body: side effects in observer memories

void node_step (input, =output , =extended_memory) {
existing code ...
/+@ ghost ghost_fields update =/
return;

}

e Function contract

/+@ ensures node_spec(input, =output, =extended_memory);
void node_step (input, =output , +extended_memory) {

%
}

*/

CONTENTS

e Context

e Synchronous observers

e Stateful observers

e Verification

VERIFICATION WITH FRAMA-C
ACSL specification used to verify the code with respect to HLR

Runtime evaluation: dynamic analysis

C code instrumented to evaluate the annotations at runtime. When
applied to a test bench it evaluates that all tests satisfy the prop-
erty.

— E-ACSL plugin of Frama-C*

“Julien Signoles. E-ACSL: Executable ANSI/ISO C Specification Language.

Formal verification using weakest precondition (WP analysis)

Proofs performed at model levels using model-checking can be
replayed at code/ACSL level.
k-induction” proofs in Lustre = expression as WP objectives

“T. Kahsai and C. Tinelli. “PKIND: A parallel k-induction based model
checker”. In: PDMC. vol. 72. EPTCS. 2011, pp. 55-62.

SYNCHRONOUS EXTENSION OF HOARE TRIPLES TO FLOWS

re(state, inputs) jnode(in, ou ost(state, state , in, ou
Pre(state, input de(in, out){Post(state, state’, in, out

means

H (Pre(state, input)) 7 s
O . = P
</\ node(state, state’ | in, out) S S, G o 05728

with H(p) £ p has held since beginning

to
Pre v - v v
Post v — v v
v v v

SO

SYNCHRONOUS EXTENSION OF HOARE TRIPLES TO FLOWS

re(state, inputs) jnode(in, ou ost(state, state , in, ou
Pre(state, input de(in, out){Post(state, state’, in, out

means

H (Pre(state, input)) 7 s
O . = P
</\ node(state, state’ | in, out) S S, G o 05728

with H(p) £ p has held since beginning

to
Pre v - v v
Post v — v X
v v X

SO

PROPERTY SO WAS PROVED INDUCTIVE

to
Base case i ,,,,,,,,,,,,,,,,,,,,,,
SO 7
fe—1 tr
Inductive case i l ,,,,,,,,,,,
SO v /7

PROPERTY SO WAS PROVED K-INDUCTIVE

to 51
Base case i l 77777777777
SO V7 V7
te—2 t—1 te
Inductive case ___ i l l

SO 4 v /?

PROPERTY SO WAS PROVED K-INDUCTIVE (CONT’D)

fo ty
Base case i l ,,,,,,,,,,,
Pre v o
e /7 /7
SO 7 V7
tk—2 te—1 ty
Inductive case i i i -
Pre v v/ v
Post A v 2
v v 2

SO

EXPRESSION K-INDUCTIVENESS AT CODE LEVEL
Previous version was too naive (or good only for dynamic checking)

//@ ensures reset => not +active;

void counter_step (_Bool reset,
_Bool =xactive,
counter_mem «self) {

}
The property is 3-inductive:

//@requires Init(s) && Pre(s)
//@ensures Post(s)

//@requires \exists s1, Init(s1) && Pre(s1) && Pre(s) && Step(s1, s)
// @ensures Post(s)

// @requires \exists s1,s2, Init(s2) && Pre(s2) && Pre(s1) && Pre(s)
//@ && Step(s2,s1) && Step(st1, s)
// @ensures Post(s)

// @requires \exists s1,s2, Pre(s2) && Pre(s1) && Pre(s)
//@ && Step(s2,s1) && Step(s1, s) && Post(s2) && Post(st)
// @ensures Post(s)

PLAYING WITH PROOF OBJECTIVES: EQUIVALENT
FORMULATION INTEGRATING POST IN BMC

Since all BMC PO should be proved, one can write them as

// @requires Init(s) &&
//@ensures Post(s)

//@requires \exists sft,
//@ && Step(st,

//@ensures Post(s)

//@requires \exists st,
//@ && Step(s2,

//@ensures Post(s)

//@requires \exists st,
//@ && Step(s2,

//@ensures Post(s)

Pre(s)

Init(s1) && Pre(s1) && Pre(s)
s) && Post(st1)

s2, Init(s2) && Pre(s2) && Pre(s1) && Pre(s)
s1) && Step(s1, s) && Post(s2) && Post(st1)

s2, Pre(s2) && Pre(s1) && Pre(s)
s1) && Step(s1, s) && Post(s2) && Post(st1)

K-INDUCTION IN ONE PO

Encode multiple objectives :
(A1, = B)A(A2 = B)A...N(An = B)

into one
(Al\/Az\/...\/An) — B

Prefix definition:

Prefixy = (Post(s) V Init(s)) A Pre(s)
Prefixe.n = (I(s) V (3¢, Prefixi(s) A Step(s’,s) A Post(s))) A Pre(s)

EXAMPLE REVISITED

//@ Prefix3(true, reset => not =active, Step)
//@ ensures reset => not =active;
void counter_step (_Bool reset,

_Bool =+active,

counter_mem =«self) {

}
is equivalent to

/«@ requires (Init(self) [/

(lexists selfl, resetl, activel, Init(selfl)

&& Step(selft, self, resetl, activel) && resetl => not =activel)
/1

(lexists selfl, resetl, activel, self2, reset2, active2, Init(self2)
&& Step(self2, selfl, reset2, active2) && reset2 => not =active2

&& Step(selft, self, resetl, activel) && resetl => not =activet)

/1

(\exists selfl, resetl, activel, self2, reset2, active2,

Step(self2, selfl, reset2, active2) && reset2 => not =+active2

&& Step(selft, self, resetl, activel) && reset! => not =+activel)

*/

//@ ensures reset => not =active;

void counter_step (_Bool reset, _Bool «active, counter_mem =self) {...

PROVING OPTIMIZED CODE

e Frama-C/WP is not able to discharge the PO

» we have to associate a predicate Init to counter_init and a Step to
counter_step

The two remaining PO capture this:
(i) /~@ensures Init(mem) void N_init (mem=)
(ii) ~@ensures Step(s1,s2, in ,out) void N_step (mem1, mem2, in, out)
They are discharged with WP plugin.
The approach authorizes the use of code optimization:
e live variable analysis
* minimize the memory footprint wrt a given instruction scheduling
* maintain shared subexpressions
thanks to
» (automatic) generation of supporting ACSL annotations

* maintaining the relationship between live variables
* easing the automatic proof of (i) and (ii)

VERIFICATION WITH FRAMA-C - WP

For a complete analysis, additional annotations are automatically
generated:

» validity of pointers
s separation of pointer aliases

e identification of modified variables (assigns)

/«@ requires \valid(active);
@ requires \valid(self);
@ requires \separated(active, &self—>reg.__counter_1,
@ &self—>reg.__counter_2);
@ assigns =+active, self—>reg.__counter_1,
@ self—>reg.__counter_2;
*/
void counter_step (_Bool reset, _Bool (xactive),
struct counter_mem =«self) { ... }

All theses annotations are checked and support the formal analyses
of encoded HLR.

CONCLUSION

e Context : Toolchain Simulink — Lustre — C code — executable.
» Aim : verify HLR on executable
« Simulink — Lustre and C code — executable are assumed correct.
+ verification hard at code level, easier at model level.
* use of formal methods to ascertain correction (no testing).
 fully automatic.
e Proposition :
1. express HLR at model level, as synchronous observers.

2. check them.
3. carry properties and proofs over to the code level.
4. support the revalidation of properties at code level
éie[gs;i‘?tl; Lustre C code
g
PKind
""" { Test generation

LUSTRE-C

aoono ©
[ews]

E-ACSL ¢

	Context
	Synchronous observers
	Stateful observers
	Verification

