
ATOS: an Auto-Tuning

Optimization System

A. Moynault, H. Knochel, R. Duraffort,

D. Ferranti, C. Robine, C. Vincent, C. Guillon,

F. de Ferrière

2013-12-06

Auto Tuning Optimization System

ATOS stands for:

 “Auto Tuning Optimization System”

It is based on iterative compilation optimization

• Functional requirements

• Find automatically a best C/C++ compiler configuration for some given objectives

• Explore on top of any build system with a given set of representative use cases

• Application

• Best performance / size tradeoffs search for:

• a given set of executables/libraries/kernel modules

• a given set of benchmarking use cases

• Requires a “representative” use case

2

ATOS high level usage 3

 unmodified

compile.sh

 atos-explore
Local or global

Configuration

Database

 exec.sh

executable

name

atos-play
Optimized

executable
 unmodified

compile.sh

Local extract of

database
OR

Remote

configuration

access

Developer or batch environment

Release environment

Unmodified compile.sh: actually any build system command:

• make all

• rpmbuild

• build.sh

• . . .

exec.sh: actually a script running the application

• make run

• direct or remote execution

• run.sh

• emulated or on board

ATOS Exploration and Replay Example 4

4

Best Speed

Best Size

-O2
-Os

-O3

Optimized build

Configuration

Rebuild with

atos-play –f time gcc ...

Explore with

atos-explore –b build.sh –r run.sh

 Selected

Best trade-off

ATOS Features

• Simple command line interface

• Easy to use on top of a build system

• Only requires a build and run scripts

• Uses PRoot to intercept calls to the compiler and change command line options

• Limited to Linux

• Easy to get performance figure

• By default ATOS uses user time

• Or the run script can return its own figure

• ATOS can also compute an average on multiple runs

• Better results in cases execution time has some variation

• Support of GCC 4.5/4.6/4.7/4.8 / LLVM 3.1 / RVCT

5

ATOS Features (Cont’d)

• Support for 'perf' and 'oprofile‘ tools

• Provide seamless profiling feedback and link time optimizations

• Native or cross build and run

• Can execute build and run scripts in parallel

• Compilation on farms

• archiving & sandboxing provided by CARE & PRoot

• Execution on farms

• sandboxing & functional emulation provided by PRoot and QEMU

• Web portal to gather and share results

6

ATOS Features (Cont’d)

• Whole executable optimization sequences

• Find the best sequence of flags for the whole application

• File by file exploration of optimization sequences

• Use profiling to make a hot/cold partitioning of the files

• Hot files are optimized for speed, explorations are performed on each file

• Cold files are optimized for size

• Function by function exploration with provided GCC plugins

• Use profiling to make hot/cold partitioning of functions

• Hot functions are optimized for speed, explorations are performed one function at a

time

• Cold functions are optimized for size

• A GCC plugin is used

• to read an ACF (Application Configuration File) file that describes options and parameters

for a list of functions

• To pass these options and parameters to GCC when a function is compiled

7

8

09/12/2013 Presentation Title

8

Best size tradeoff

Used for cold functions

Improvements
while hot functions are discovered

Reference (-O3)

Current best perf tradeoff

8.44% speedup 15.89% reduction

 ATOS function-by-function exploration

A parallel exploration

• An exploration with parallel build and run

• Parallel build

and run

• On a farm of 50

CPUs

• Exploration with

250 random

sequences

• Accelerated 3x

Real time : 4’

9

Exploration of the option space

• The exploration space is huge

• On GCC 4.6.2, ATOS can tune 115 -f options and 61 --param options

• But ATOS has flag’s dependencies to avoid generating meaningless sequences

• An exploration to tune an application typically consists of a few hundred to several

thousand option sequence

• We experimented with various techniques for the exploration of the

option space

• Random

• Generate random sequences of options

• Staged

• The option space is divided into three sets : inline, loop, optim

• Search for best option sequence is performed successively in each set

• Genetic

• Compiler flags are genes

• A sequence of compiler flags defines an individual

• A set of compiler flags sequences is a generation of individuals

• The algorithm applies genetic transformations to individuals so as to improve a fitness

function on individuals over generations

10

A genetic algorithm for ATOS

• Implemented evolution and mutation genetic operators

• No experiment with cross-over

• Values tuned by experiments confirmed what is found in the literature

• Probability for a sequence to mutate instead of evolve: 0.3

• For a sequence’s evolution, probability for a flag to evolve: 0.3

• For a sequence’s mutation, probability for a flag to mutate: 0.3

• Only one best sequence is kept at the end of a generation to seed the next generation

• Improved the genetic algorithm with static flag ranking

• We expect that only a small fraction of the 115 gcc options has a significant, good

or bad, impact on the performance or code size

• Compute a ranking of flags from a few benchmarks

• Use this ranking for explorations on other benchmarks

• The ranking can be used on random, staged and genetic explorations

• Best flags will have more probability to be selected

• Worst flags will have less probability to be selected

• Only on –f/-fno- flags, not on –param options

11

Experimentation

• Performed explorations on 10 embedded application cores of a few

hundred lines

• Compared random, staged and genetic explorations

• Each exploration is ran 20 times with a different random seed to reduce random

bias

• Small explorations

• Only 100 sequences, or 10 generations of 10 sequences

• But still requires about one week to complete.

• Flag ranking was used on random and genetic explorations

• Flag ranking was computed on three other benchmarks

• bzip2, sha1, spec2006/astar

• 80% -finline-functions, -fearly-inlining, -finline-small-functions, -funroll-all-loops,

-ftree-loop-optimize, -fivopts, -funroll-loops, -fguess-branch-probability, -ftree-sra

• 20% -ftree-ch, -ftree-pre, -fselective-scheduling2, -ftree-vrp, -fforward-propagate,

-fschedule-insns

12

Exploration Results 13

• Normalized the results of each

benchmark to compute an average

• Staged explorations failed to find

good combinations with two or

more options

• Genetic algorithm improves over random exploration

• Random exploration give better results on the first sequences

• Genetic algorithm becomes better than random after 3 generations

• Flag ranking performs well

Genetic is

better

Random is

quicker

Ranking

is better

ATOS optimization results 14

• JPEG ST40 / HDK7108 results

• 26.39% speedup / 13.37% size increase

• ZLIB ST40 / HDK7108 results

• 12.54% speedup / 1.41% size increase

• Stagecraft ST40 / HDK7108 results

• 5-28% speedup (30 benchs) / 14% size reduction

• HEVC ARMv7 / Orly results

• 9.22% speedup / 21.21% size reduction

• SPEC2000 ARMv7 / U9540 results

• 18.7% speedup SPECINT / 10.2% speedup SPECFP / size increase n/a

ATOS Portal

• Exploration results can be archived on an ATOS web portal

15

Conclusion

• Good results so far, with interesting speedups on real applications

• ATOS has been used to optimize the HEVC application and standard Linux libraries

• ATOS may also prove very interesting on not well tuned compilers for

recent architectures

• Will continue to work on the genetic algorithm

• Add dynamic flag ranking

• But ATOS is not publicly available yet

16

