ATOS: an Auto-Tuning
Optimization System

A. Moynault, H. Knochel, R. Duraffort,
D. Ferranti, C. Robine, C. Vincent, C. Guillon,
F. de Ferriere

2013-12-06

‘ 'l life.augmented

Auto Tuning Optimization System

ATOS stands for:
“Auto Tuning Optimization System”

It is based on iterative compilation optimization

 Functional requirements
* Find automatically a best C/C++ compiler configuration for some given objectives
» Explore on top of any build system with a given set of representative use cases

* Application
* Best performance / size tradeoffs search for:

» a given set of executables/libraries/kernel modules
* a given set of benchmarking use cases

* Requires a “representative” use case

Lys

life.augmented

ATOS high level usage

unmodified
compile.sh
— Local or global
atos-explore pr— exec.sh Configuration
| Database
: executable
name Developer or batch environment
--------------------------.------2:::::1.--‘ --
Remote Release environment
Local extract of OR configuration
database access

t I dified Optimized
clsaYlel | Mumeeine : executable
compile.sh ’

Unmodified compile.sh: actually any build system command: exec.sh: actually a script running the application
* make all * make run
rpmbuild + direct or remote execution
* build.sh * run.sh
L * emulated or on board

Lys

life.augmented

ATOS Exploration and Replay Example

Explore with

atos-explore -b build.sh -r run.sh

Selected
Best trade-off

OUptimization Space for astar-real [ref=R

40.00% |- .
I
T 30.00% e &7 Optimized build
£ Configuration
L0
0
@ 20.00% - S
= ' Rebuild with
=y
-C]
:; ; atos-play -f time gcc ...
5 5 5 ' :
E 100(}% | & ' ' R T '___
@ : : :
o
n
0.00% H ® -® frontier |5— ;[Best Size J
@ refcases | ®
e®e oOptcases| : :
210.00% L——— .. beeeeeeii e I e 1 i
-40.00% -30.00% -20.00% -10.00% 0.00%
r size reduction (higher is better) -->
Y

life.augmented

ATOS Features

« Simple command line interface

- Easy to use on top of a build system
* Only requires a build and run scripts
» Uses PRoot to intercept calls to the compiler and change command line options
 Limited to Linux

- Easy to get performance figure
* By default ATOS uses user time
* Or the run script can return its own figure
« ATOS can also compute an average on multiple runs

» Better results in cases execution time has some variation

» Support of GCC 4.5/4.6/4.7/4.8 / LLVM 3.1/ RVCT

Lys

life.augmented

ATOS Features (Cont'd) mm

» Support for 'perf' and 'oprofile’ tools
* Provide seamless profiling feedback and link time optimizations
 Native or cross build and run

» Can execute build and run scripts in parallel

» Compilation on farms
« archiving & sandboxing provided by CARE & PRoot
« Execution on farms

« sandboxing & functional emulation provided by PRoot and QEMU

* Web portal to gather and share results

Lys

life.augmented

ATOS Features (Cont’d)

* Whole executable optimization sequences
» Find the best sequence of flags for the whole application

* File by file exploration of optimization sequences

» Use profiling to make a hot/cold partitioning of the files
» Hot files are optimized for speed, explorations are performed on each file

» Cold files are optimized for size

* Function by function exploration with provided GCC plugins

» Use profiling to make hot/cold partitioning of functions

» Hot functions are optimized for speed, explorations are performed one function at a
time

» Cold functions are optimized for size

A GCC plugin is used

+ to read an ACF (Application Configuration File) file that describes options and parameters

for a list of functions
» To pass these options and parameters to GCC when a function is compiled

Lys

life.augmented

speedup (higher is better) --=

10.00%

8.00% -

0.00%

ATOS function-by-function exploration

Optimization Space for HEVC decoder ARM/NEON [ref=REF]

Moo er%ents g Current best perf tradeoff
Proveme . @ < 8.44% speedup 15.89% reduction
while hot functions are discovered o,
e .
P e
6.00% - .. \\“ a
400% . “\"’.\ -
2.00% | ‘ i
. Best size tradeoff
Used for cold functions
™ Reference (-O3)
e
L]
L)
K
_400% e _ :.. -
& - frontier
e®e oOptcases

. 0,
6-00% 0%

5.00%

i
10.00%

I I I I
15.00% 20.00% 25.00% 30.00%
size reduction (higher is better) -->

35.00%

» Parallel build
and run

* On afarm of 50
CPUs

» Exploration with
250 random
sequences

* Accelerated 3x
Real time : 4’

speedup (higher is better) -->

30.00%

20.00%

10.00%

0.00%

-10.00%

* An exploration with parallel build and run

A parallel exploration ma

Optimization Space for shal-c-x86_64-gemu [ref=0PT-02]

T T
............ ;,............................é.....................k?..é............................ e e
| 5 S
b) o
: ° [] LJ ".. ® h_-".
T SRS RN SRSRSTRSRRSPRTNTY FSUSRTR
° L e
s ° ° ;@
e g L]
: ® .
I o e® .. _____________________________________ |
: b L] . Ce o® ..é
°® . °:) e ®
. e P :
: L] : :
. B § e
~ Y .. - .
O O T eg® @
e %o .
| S et 0%,
. ® . @ ® o o '@
¢ - frontier b PO e °
@ refcases| o egay
e®e oOpt cases
I I I
-150.00% -100.00% -50.00%

size reduction (higher is better) -->

Exploration of the option space

* The exploration space is huge
* On GCC 4.6.2, ATOS can tune 115 -f options and 61 --param options

« But ATOS has flag’s dependencies to avoid generating meaningless sequences

» An exploration to tune an application typically consists of a few hundred to several
thousand option sequence

« We experimented with various techniques for the exploration of the
option space
« Random
» Generate random sequences of options
» Staged

» The option space is divided into three sets : inline, loop, optim
» Search for best option sequence is performed successively in each set

* Genetic

Compiler flags are genes
A sequence of compiler flags defines an individual
A set of compiler flags sequences is a generation of individuals

The algorithm applies genetic transformations to individuals so as to improve a fithess
function on individuals over generations

Lys

life.augmented

A genetic algorithm for ATOS

* Implemented evolution and mutation genetic operators

No experiment with cross-over
Values tuned by experiments confirmed what is found in the literature

» Probability for a sequence to mutate instead of evolve: 0.3

» For a sequence’s evolution, probability for a flag to evolve: 0.3

» For a sequence’s mutation, probability for a flag to mutate: 0.3

» Only one best sequence is kept at the end of a generation to seed the next generation

* Improved the genetic algorithm with static flag ranking

Lys

life.augmented

We expect that only a small fraction of the 115 gcc options has a significant, good
or bad, impact on the performance or code size

Compute a ranking of flags from a few benchmarks
Use this ranking for explorations on other benchmarks

« The ranking can be used on random, staged and genetic explorations
Best flags will have more probability to be selected

Worst flags will have less probability to be selected
Only on —f/-fno- flags, not on —param options

Experimentation

» Performed explorations on 10 embedded application cores of a few
hundred lines

- Compared random, staged and genetic explorations
» Each exploration is ran 20 times with a different random seed to reduce random
bias
» Small explorations

« Only 100 sequences, or 10 generations of 10 sequences
 But still requires about one week to complete.

* Flag ranking was used on random and genetic explorations

» Flag ranking was computed on three other benchmarks

* bzip2, shal, spec2006/astar
» 80% -finline-functions, -fearly-inlining, -finline-small-functions, -funroll-all-loops,
-ftree-loop-optimize, -fivopts, -funroll-loops, -fguess-branch-probability, -ftree-sra
» 20% -ftree-ch, -ftree-pre, -fselective-scheduling2, -ftree-vrp, -fforward-propagate,
-fschedule-insns

Lys

life.augmented

Exploration Results

Average Graph

- Normalized the results of each | Random is
benchmark to compute an average | T o AV _
. 7 — " Genetic is |
- Staged explorations failed to find & | | | |
good combinations with two or /. A o A
more options /. | I e
osolfll R o |
— GENO2
: ; | _. GENWO?2

number of tested configurations -->

« Genetic algorithm improves over random exploration
 Random exploration give better results on the first sequences
» Genetic algorithm becomes better than random after 3 generations

* Flag ranking performs well

Lys

life.augmented

ATOS optimization results

« JPEG ST40 / HDK7108 results
» 26.39% speedup / 13.37% size increase

« ZLIB ST40 / HDK7108 results
» 12.54% speedup / 1.41% size increase

 Stagecraft ST40 / HDK7108 results
» 5-28% speedup (30 benchs) / 14% size reduction

- HEVC ARMvV7 / Orly results
» 9.22% speedup / 21.21% size reduction

« SPEC2000 ARMvV7 / U9540 results
» 18.7% speedup SPECINT / 10.2% speedup SPECFP / size increase n/a

ATOS Portal mm

 Exploration results can be archived on an ATOS web portal
T

Home ' Projects = HEVC = arm-orly 20121203 update (func-by-func) = |

Target «ldecod.exe»

Speedup vs. Size Reduction for Idecod.exe on arm-orly 20121203 update (func-by-func)
HEVC

20
Runs
Reference
10 M EBest Speedups u
M BestSizeReds - .
' wpp WP
&
g o L * 0 G, R - o e R ¢
Z B =i N e AL
o
w0
20
] :
-0 15 -10 5 0 5 10 15 20 25 0 S 40
Size Reduction (36)
Highchars.com
click on a point to see the configuration
Best Speedups Best Size reduction
Size Size
Hash Speedup Red. Version Conf uConf Hash Speedup Red. Version Conf uConf
d4973.. 9.57 21.80 1.0-257- --atos- --atos- - 30194, 1,95 3516 1.0-249- -02 --param -02 --param -
g573142a2 optfile=/w.. optfile=/w... g8062b331 inlin.. inlin.
"I @ STMicroelectronics 2013 Version 1.0

life.augmented

Conclusion

» Good results so far, with interesting speedups on real applications
» ATOS has been used to optimize the HEVC application and standard Linux libraries

- ATOS may also prove very interesting on not well tuned compilers for
recent architectures

» Will continue to work on the genetic algorithm
» Add dynamic flag ranking

« But ATOS is not publicly available yet

life.augmented

